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MOTION ON THE RESONANT RESPONSE OF
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Linear response analyses were carried out to investigate the influence of an elastic bottom
plate motion on a liquid free surface resonant response amplitude in a cylindrical container
with a rigid wall. The bottom plate is harmonically excited with a constant amplitude in
the frequency range of the lower sloshing mode, assuming that liquid responses are
axisymmetric. Resonant response amplitudes of the free surface were found to vary with
liquid heights; i.e., with the increase of the liquid height from zero, response amplitudes
increase, taking a maximum at some height, and then decrease with the liquid height, which
indicates that there is a most effective liquid height on the response amplitude, and the
influence of the bottom motion decreases with the liquid height. The calculated results
obtained here showed qualitative agreement with experimental results.
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1. INTRODUCTION

A liquid storage tank, e.g., a large capacity oil tank, is one of the most popular
fluid–structure coupled dynamical systems, with which engineering problems are often
encountered that cannot be solved within a linear analysis. In such cases, a non-linear
dynamic analysis for both the liquid and an elastic container has to be employed.

To investigate the non-linear fluid–structure coupled problem both theoretically and
experimentally, the author has been conducting systematic studies on a cylindrical
container with a rigid wall and an elastic bottom (base), which is one of the fluid–elastic
container coupled systems (see Chiba [1, 2]). There have been many studies on vibration
analysis within a linear range for such a coupled system; i.e., an elastic container with an
elastic bottom. Studies on a rigid wall cylindrical tank with a flexible bottom have been
conducted by Bhuta and Koval [3, 4], Tong [5], Siekmann and Chang [6], Nagaya and
Takeuchi [7], Takada and Ono [8] and Chiba [2], and on a rectangular tank by Bauer [9].
For an elastic container with a flexible wall and a flexible bottom, studies have been carried
out by Bauer et al. [10], Bauer and Siekmann [11] and Bauer et al. [12]. Coal and
Nagano [13] have analyzed an elastic cylindrical tank with an elastic semi-spherical
bottom. Fujita [14] has carried out an aseismatic response analysis for an elastic cylinder
with a flexible bottom.

Interesting results have been obtained from the experimental study, carried out by Chiba
[1], on the non-linear vibration of a liquid-containing cylindrical tank with an elastic
bottom. They are presented in Figure 1, in which is shown the variation of the
non-dimensional liquid free surface amplitude (d'/h)rms with liquid height parameter li ,
when the center of the elastic bottom plate is harmonically excited with constant amplitude
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Do=0·3 mm, 0·6 mm at the sloshing resonant frequency ranges of the first and the second
axisymmetric modes. From the results, one can see the following: the response amplitude
has a peak at some liquid height lic , and the amplitude decreases with the increase of li .
Furthermore, the amplitude of the second mode is much less than that of the first mode,
under the same excitation amplitude.

In this paper is presented a linear analysis of the influence of an elastic bottom motion
on the response of liquid free surface, as the first step in the non-linear analysis, clarifying
the above experimental results. The aim of this study is also to provide an answer to the
following question: How much does an elastic bottom motion influence the liquid free
surface response with different liquid height? In other words, when we excite the liquid
in a container by tapping on an elastic bottom, how much does the free surface response
amplitude depend on the liquid height?

In the present analysis, the effects of a static deflection of the bottom plate are
considered. From the results, the influence of the motion of the elastic bottom plate was
found to have a peak, and decreases with liquid height, and the present results showed
substantial agreement with the previous experimental results [1], even if this is a linear
analysis. It should be noted here that, concerning the study of the response of a liquid free
surface, Bhuta and Yeh [15] have analyzed the axisymmetric motion of a liquid free surface
due to the outlet velocity fluctuations at the bottom, which relates to the problem of a
fuel tank connected to a propulsion system.

It should be emphasized that, in the present analysis, axisymmetric excitation was
considered, because the center of the bottom plate was excited in the experiment. In actual
engineering problems, i.e., a liquid storage tank under vertical earthquake excitation, a
liquid fuel tank in a rocket under axial acceleration during launching, and so on,
axisymmetric excitation is often encountered.

Figure 1. The amplitude of a liquid free surface for the first and second axisymmetric sloshing mode. ——,
Do=0·6 mm; – – –, Do=0·3 mm, experiment.
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Figure 2. A cylindrical container with an elastic bottom.

2. BASIC EQUATION AND BOUNDARY CONDITION

Incompressible and inviscid liquid is contained, to a height H, in a circular cylindrical
container of radius R with a rigid wall and an elastic bottom (base). We shall consider
the effect of bottom plate motion on the liquid free surface response, when the bottom
plate is harmonically excited at small amplitudes. The co-ordinate system is defined as
shown in Figure 2. At the beginning, the bottom plate is deflected by −W0 due to static
liquid pressure, and then small amplitude forced motion with amplitude W is enforced
around it.

The liquid is assumed to make an irrotational axisymmetric motion. Therefore the basic
equation and the boundary conditions for the liquid velocity potential f will be as follows
(see reference [2]):

92f=0, (1)

f,tt + ḡf,j =0 at j= li , (2)

f,r =0 at r=1, (3)

w,t −f,j −w0,rf,r +w0f,jj =0 at j=0. (4)

Equation (2) is a free surface condition, equation (3) is the rigid wall condition and
equation (4) is a velocity matching condition at the bottom. In these equations, the
following non-dimensional parameters are used:

j= z/R, r= r/R, li =H/R, t=V0t, ḡ= g/(RV2
0), v=V/V0,

V2
0 = lim

li:a
(go1/R) tanh (o1li), (w, w0)= (W, W0)/R, f=F/(V0R2). (5)

In these equations, t is time, li is the non-dimensional parameter concerned with liquid
height H, and o1 is a parameter that satisfies equation (9). A list of notation is given in
Appendix II.

3. METHOD OF SOLUTION

The static deflection w0(r) and forced vibration w(r, t) of the bottom plate, and the
velocity potential f(r, j, t) are assumed in the following form:

w0(r)= aw(r)= a(1− r2)2, w(r, t)= bw(r) cos vt, (6, 7)
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f(r, j, t)=−v$A0(t)j+B0(t)+ s
k

J0(okr)0sinh (okj)
cosh (okli)

Ak(t)+
cosh (okj)
sinh (okli)

Bk(t)1%,
(8)

where a and b are amplitude parameters, and A0(t), B0(t), Ak(t) and Bk(t) are unknown
time functions. Equations (6) and (7) satisfy the clamped boundary condition along the
edge (see reference [2]). The ok are the values that satisfy

J1(ok)=0. (9)

First, substituting equations (6), (7) and (8) into the velocity matching condition (4), we
obtain A0(t) and Ak(t) in the following forms:

A0(t)=0a1b+ a s
k

bkBs
k(t)1 sin vt, (10)

Ak(t)=0a2b+ a s
p

gkpBs
p(t)1 sin vt, (11)

where a1, a2, bk and gkp are coefficients.
Then, putting the damping term, df,t , into the free surface condition equation (2) for

convenience, and assuming that

B0(t)=Bc
0 cos vt+Bs

0 sin vt, Bk(t)=Bc
k cos vt+Bs

k sin vt, (12, 13)

yields the free surface condition in the form

v2 −vd 2aXk(v2li − ḡ) −2aXkvdli · · ·

vd v2 2aXkvdli 2aXk(v2li − ḡ) · · ·

0 0 (v2CTHp − ḡop)dpq −vd(CTHp dp +2aYpZkp) . . .
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Figure 3. The natural frequency of an axisymmetric sloshing mode.

where dpk is the Kronecker delta, and CTHp , Yp , Pp , etc. are presented in Appendix I.
This is a (2k+2) coupled linear equation with respect to Bc

0, Bs
0, Bc

k and Bs
k , and this

equation can be solved when v, li , a and b are given. From the above solutions, the
non-dimensional free surface response, d= u/R, can be obtained using the following
equation:

d,t(r, t)=f,j(r, t) at j= li . (15)

4. NUMERICAL RESULTS

First, the variations of the sloshing natural frequencies of the axisymmetric mode with
the liquid height, li , are shown in Figure 3, for the lower three modes. As shown in the
figure, the natural frequency increases from zero and tends to a saturated value, with an
increase in the liquid height li .

Then, we shall examine the response amplitude variation of each mode with the liquid
height li , when the bottom plate is harmonically excited with a constant amplitude. To this
end, the frequency response curve of the liquid free surface at the middle of the tank was
obtained in the proximity of the natural frequency. As an example, the result when li =0·2

Figure 4. The frequency response curve at the center of the free surface: li =0·2, d=0·001.
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Figure 5. Frequency response curves of the first mode with li : d=0·001.

and d=0·001 is shown in Figure 4, for the first mode. In the calculations, the unknown
parameter k in equation (14) was taken as k=1, 2, 3. In the ordinate, the r.m.s. value
of the non-dimensional free surface amplitude normalized by the excitation amplitude b,
h= u/b=Rd/b, is taken. Since the analysis is linear, i.e., the response is linearly
proportional to the excitation amplitude and is independent of b (see equation (14)), it is
convenient to use this non-dimensional amplitude, h. At v=0·803 one can see a sharp
resonance peak. Similar response curves can be calculated by changing the li value. These
are shown in Figure 5 for the first mode, when d=0·001. With the increase in li , the
resonance frequency increases, as is shown in Figure 3. From these results, taking the
maximum points for each li result for the modes from the first to the third, we obtain
Figure 6. From the figure one can see the following.

(1) The response amplitude increases with li and has its maximum at lic =0·17 for the
first mode, and at lic =0·09 for the second mode; it then decreases. This means that there
is a most effective liquid height that is influenced by the elastic bottom plate motion, and
that the influence of the bottom plate motion becomes insignificant for higher liquid
heights.

Figure 6. The variation of the response amplitude with li :d=0·001.
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Figure 7. The influence of damping d on the response amplitude.

(2) We can conclude that the higher the vibration mode, the smaller is the maximum
amplitude. It can also be said that the lic that corresponds to the maximum amplitude
decreases slightly for higher modes.

Next, in order to see the effect of the damping parameter d, response curves were
obtained for varying values of d=0·001, 0·002, 0·005 and 0·01. The results are shown in
Figure 7 for the first mode. Then, the effect of the initial static deflection of the bottom
plate, a, is shown in Figure 8 for the first mode, from which one can see that there is little
influence of the static deflection on the amplitude of the response.

Comparison with experimental results in reference [1] are presented in Figure 9,
re-normalizing the experimental data by the excitation amplitude. In the figure, the solid
lines are the present results when d=0·0016 for the first mode and the second mode, while
w and w· represent the experimental data when Do=0·3 mm, and q and r are the data
when Do=0·6 mm, respectively. The value d=0·0016 was chosen so as to match the
response amplitude in the experiments with that of the numerical results.

The variations of the response amplitude with li are in good agreement, except that the
lic of the experimental results are a little higher than the calculated ones. This may be due

Figure 8. The effect of the initial deflection of the bottom plate on the response amplitude: first mode.
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Figure 9. A comparison with experimental results: d=0·0016.

to two factors: the first is the non-linear effect in the experimental data, and the second
is the difference of the bottom plate deflection; i.e., in the experiment the bottom plate
is excited at its center, and the spatial distribution of the deflection along the radial
direction is a little different from that used in the analysis.

Finally, in Figures 10(a) and 10(b), free surface vibration modes with li are presented
for the first and second modes, respectively.

5. CONCLUSIONS

A linear response analysis was carried out to study the influence of the elastic bottom
plate motion on the free liquid surface axisymmetric resonant response amplitude in a
cylindrical container with a rigid wall, when the bottom plate is harmonically excited with
a constant amplitude. The results obtained in the present analysis are as follows.

(1) The response amplitude of the free surface depends on the liquid height; it reaches
its maximum at the approximate non-dimensional liquid height of lic =0·17 and then

Figure 10. Mode variation with li : (a) first mode; (b) second mode.
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decreases with liquid height, in the first axisymmetric mode. This means that there is a most
effective liquid height that is influenced by the elastic bottom plate motion, and that the
influence of the bottom plate motion becomes insignificant for higher liquid heights.

(2) In the second and third modes, the maximum amplitude decreases with an increase
in the order of vibration mode, shifting the corresponding liquid height lic to a slightly
lower one.

(3) The influence of the static deflection of the bottom plate on the response amplitude
is small.

(4) Results (1) and (2) agree well with previous experimental results.

The present linear analysis will provide fundamental information for non-linear analysis
in the future.
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APPENDIX I: PARAMETERS IN EQUATION (14)

CTHp =coth (opli), Xk = ok(Rk + okPk)/sinh (okli), Yp =
2 sinh (opli)

opJ2
0(op)

,

Zkp =
op

sinh (opli) 0g
1

0

w(r),rJ1(okr)J0(opr)r dr+ ok g
1

0

w(r)J0(opr)J0(okr)r dr1,
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Q=g
1

0

w(r)r dr=
1
6
, Pp =g

1

0

w(r)J0(opr)r dr, Rk =g
1

0

w(r),rJ1(okr)r dr.

Zkp , Pp and Rk are numerically integrated.

APPENDIX II: NOTATION

A0, Ak , B0, Bk unknown time functions in equation (8)
a initial deflection amplitude parameter
b excitation amplitude parameter
H (li) liquid height (non-dimensional form)
h thickness of bottom plate (experiment)
g (ḡ) gravitational acceleration
R radius of container
t (t) time
u(d, h) free surface amplitude
W (w) excitation amplitude
W0 (w0) static deflection of bottom plate
d damping parameter
d' free surface amplitude (experiment)
dpk Kronecker delta
Do excitation amplitude (experiment)
f velocity potential
V (v) frequency


